
1

Fast Multiclass Segmentation using Diffuse
Interface Methods on Graphs

Cristina Garcia-Cardona, Ekaterina Merkurjev, Andrea L. Bertozzi, Arjuna Flenner and Allon G. Percus

Abstract—We present two graph-based algorithms for multiclass segmentation of high-dimensional data. The algorithms use a diffuse
interface model based on the Ginzburg-Landau functional, related to total variation compressed sensing and image processing. A
multiclass extension is introduced using the Gibbs simplex, with the functional’s double-well potential modified to handle the
multiclass case. The first algorithm minimizes the functional using a convex splitting numerical scheme. The second algorithm is a
uses a graph adaptation of the classical numerical Merriman-Bence-Osher (MBO) scheme, which alternates between diffusion and
thresholding. We demonstrate the performance of both algorithms experimentally on synthetic data, grayscale and color images,
and several benchmark data sets such as MNIST, COIL and WebKB. We also make use of fast numerical solvers for finding the
eigenvectors and eigenvalues of the graph Laplacian, and take advantage of the sparsity of the matrix. Experiments indicate that
the results are competitive with or better than the current state-of-the-art multiclass segmentation algorithms.

Index Terms—segmentation, Ginzburg-Landau functional, diffuse interface, MBO scheme, graphs, convex splitting, image processing,
high-dimensional data.

I. INTRODUCTION

Multiclass segmentation is a fundamental problem in com-
puter vision and machine learning. We present a multiclass
generalization of the graph-based segmentation procedure in-
troduced in [5]. The model applies L2 gradient flow mini-
mization of the Ginzburg-Landau (GL) diffuse interface energy
functional to the case of functions defined on graphs. The algo-
rithm in [5] performs binary segmentations in a semi-superised
learning (SSL) framework, but multiclass tasks are solved by
recursively applying a sequence of binary segmentations. Our
new method rapidly and simultaneously segments multiclass
benchmark data with higher accuracy than most previously
existing methods, while avoiding the recurrent applications of
the minimization procedure.

This new formulation uses a phase-field representation of
the GL energy functional: a vector-valued quantity is assigned
to every data point such that each of its components represents
the fraction of the phase, or class, present in that particular
point. The components of the field variable add up to one,
so the phase-field vector is constrained to lie on the Gibbs
simplex. The phase-field representation is used in the material
sciences to study the evolution of multi-phase systems [26]
and has been employed before for multiclass image segmen-
tation [36]. Nevertheless, to the best of our knowledge, this
is the first time that a vector field GL representation in the
context of functions defined on graphs is applied for multiclass
semi-supervised classification of high dimensional data.

In addition, we apply this Gibbs simplex idea to the
graph-based Merriman-Bence-Osher (MBO) scheme devel-
oped in [38]. The MBO scheme [39] is a well-established PDE
method for evolving an interface by mean curvature. As with

C. Garcia-Cardona and A. G. Percus are with the Institute of
Mathematical Sciences at Claremont Graduate University. E-mail:
{cristina.garciacardona,allon.percus}@cgu.edu.

A. L. Bertozzi and E. Merkurjev are with the Department of
Mathematics at University of California, Los Angeles. Email:
{kmerkurev,bertozzi}@math.ucla.edu.

A. Flenner is with the Naval Air Warfare Center, China Lake. E-mail:
arjuna.flenner@navy.mil.

the diffuse interface model, tools for nonlocal calculus [27]
are used in [38] to generalize the PDE formulation to the
graph setting. By introducing the phase-field representation to
the graph-based MBO scheme, we develop another new and
highly efficient algorithm for multiclass segmentation in a SSL
framework.

Thus, the main contributions of our work are: (i) to in-
troduce two new graph-based methods for multiclass data
segmentation, namely a multiclass GL formulation based on
the binary representation described in [5] and a multiclass
graph-based MBO that extends the model in [38]; and (ii)
to present very efficient algorithms to segment multiclass
geometric, image, and text data.

The paper is organized as follows. In section II we discuss
prior related work. In section III, we discuss the fundamentals
of diffuse interface models in machine learning. We then
describe our two algorithms in sections IV and V. In section
VI, we present experimental results on benchmark data sets,
demonstrating the effectiveness of our methods. Finally, in
section VII, we conclude and discuss ideas for future work.

II. PREVIOUS WORK

The discrete graph formulation of GL energy minimization
may be understood as an example of the more general form
of energy (or cost) functional for data classification used in
the context of machine learning,

E(ψ) = ||ψ||a + µ||ψ − ψ̂||pb , (1)

where the norm ||ψ||a of the classification function ψ is a
regularization term, and ||ψ − ψ̂||pb is a fidelity term, incor-
porating most (supervised) or just a few (semi-supervised) of
the known values ψ̂. The choice of the regularization norm
|| · ||a has non-trivial consequences in the final classification
accuracy. In instances where an L2 norm is used, the resulting
cost functional is a tradeoff between accuracy in the classifi-
cation of given labels vs. function smoothness. Although this
encodes the reasonable assumption that the labels should vary
smoothly almost everywhere, it is also important to preserve

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
FEB 2013 2. REPORT TYPE

3. DATES COVERED
 00-00-2013 to 00-00-2013

4. TITLE AND SUBTITLE
Fast Multiclass Segmentation using Diffuse Interface Methods on Graphs

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California, Los Angeles,Department of Mathematics,Los
Angeles,CA,90095

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
We present two graph-based algorithms for multiclass segmentation of high-dimensional data. The
algorithms use a diffuse interface model based on the Ginzburg-Landau functional, related to total
variation compressed sensing and image processing. A multiclass extension is introduced using the Gibbs
simplex, with the functional?s double-well potential modified to handle the multiclass case. The first
algorithm minimizes the functional using a convex splitting numerical scheme. The second algorithm is a
uses a graph adaptation of the classical numerical Merriman-Bence-Osher (MBO) scheme, which
alternates between diffusion and thresholding. We demonstrate the performance of both algorithms
experimentally on synthetic data, grayscale and color images and several benchmark data sets such as
MNIST, COIL and WebKB. We also make use of fast numerical solvers for finding the eigenvectors and
eigenvalues of the graph Laplacian, and take advantage of the sparsity of the matrix. Experiments indicate
that the results are competitive with or better than the current state-of-the-art multiclass segmentation
algorithms.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

14

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

the sharp discontinuities that may arise in the boundaries
between classes. Hence the interest in formulations that can
produce piecewise smooth solutions [8].

Graph-based regularization terms, expressed in terms of the
discrete Laplace operator on graphs, are often used in simi-
supervised learning as a way to exploit underlying similarities
in the data set [3], [13], [52], [54]–[56]. Additionally, some
of these methods use a matrix representation to generalize
eq. (1) to the multiple class case [13], [52], [54], [56]. The
rows in the matrix correspond to graph vertices and the
columns to indicator functions for class membership: the class
membership for vertex i is computed as the column with
largest component in the ith row. The resulting minimization
procedure is akin to multiple relaxed binary classifications
running in parallel. This representation is different from the
Gibbs simplex we use, as there is usually no requirement that
the elements in the row add up to 1.

An alternative regularization method for the graph-based
multiclass setup is presented in [47], where the authors mini-
mize a Kullback-Leibler divergence function between discrete
probability measures that translates into class membership
probabilities.

Not all the methods deal directly with the multiple classes in
the data set. A different approach is to reduce the multiclass
case to a series of two-class problems and to combine the
sequence of resulting sub-classifications. Strategies employed
include recursive partitioning, hierarchical classification and
binary encodings, among others. For example, Szlam and
Bresson present a method involving Cheeger cuts and split
Bregman iteration [28] to build a recursive partitioning scheme
in which the data set is repeatedly divided until the desired
number of classes is reached. In [29], a pairwise coupling
is described, in which each two-class problem is solved and
then a class decision is made combining the decisions of all
the subproblems. In [19], a binary encoding approach of the
class labels is used.

Our methods, on the other hand, have roots in the contin-
uous setting as they are derived via a variational formulation.
Our first method comes from a variational formulation of
the L2 gradient flow minimization of the GL functional [5].
Our second method is built upon the MBO classical scheme
to evolve interfaces by mean curvature [39]. The latter has
connections with the work presented in [22], where an MBO-
like scheme is used for image segmentation. The method
is motivated by the propagation of the Allen-Cahn equation
with a forcing term, obtained by applying gradient descent to
minimize the GL functional with a fidelity term.

Alternative variational principles have also been used for
image segmentation. In [36], a multiclass labeling for image
analysis is carried out by a multidimensional total variation
formulation involving a simplex-constrained convex optimiza-
tion. In that work, a discretization of the resulting PDEs is
used to numerically solve for the minimization of the energy.
In contrast, the discretization in both of our algorithms is given
by posing the problem in a graph setting. We represent the
data as nodes in a weighted graph, with each edge assigned
a measure of similarity between the vertices it is connecting.
Nonlocal calculus, such as that outlined in [27], is the tool used

to generalize the continuous formulation to a discrete setting
given by functions on graphs. This approach has successfully
been used in other areas such as spectral graph theory [15],
[40].

As pointed out in [5], there are interesting connections be-
tween the GL functional on graphs and normalized graph cuts.
Shi and Malik [45] pose the problem of image segmentation
as the solution of a generalized eigensystem generated from
a graph Laplacian. In [8], graph cuts are used to efficiently
find local minima of a wide class of energies with vari-
ous smoothness constraints for multiclass image restoration.
Also, as mentioned earlier, the method in [48] is a recursive
graph-based partition scheme. A multiclass algorithm for
the transductive learning problem in high-dimensional data
classification, described in [10], is based on `1 relaxation
of the Cheeger cut and the piecewise constant Mumford-
Shah or Potts models. In [9], rigorous convergence results are
presented for two algorithms that solve the relaxed Cheeger
cut minimization used for unsupervised data clustering are
presented. Our proposed methods are related to some of these
approaches, but use the graph Ginzburg-Landau functional
framework.

In the continuous setting, it can be shown that the GL
is a diffuse interface approximation to the total variational
functional [21], [33], and analogous results have recently been
proved in the graph setting as well [6]. This function is a
natural framework for producing smooth labels everywhere
while preserving sharp discontinuities, with the sharpness
controlled by a diffuse interface parameter. The advantage of
the diffuse interface model is that the energy functional is
more tractable, and can be minimized by simpler numerical
methods.

III. SEGMENTATION USING THE GINZBURG-LANDAU
FUNCTIONAL ON GRAPHS

A. Ginzburg Landau Functional and Diffuse Interface Model

The classical Ginzburg-Landau (GL) functional, originally
proposed to describe physical phenomena such as liquid-gas
transitions and superconductivity [46], can be written as

GL(u) =
ε

2

∫
|∇u|2dx+

1

ε

∫
Φ(u)dx, (2)

where u is a scalar field defined over a space of arbitrary
dimensionality and representing the state of the phases in the
system, ∇ denotes the spatial gradient operator, Φ(u) is a
double-well potential, such as Φ(u) = 1

4 (u2 − 1)2 and ε is a
positive constant. In the next subsection we derive in detail
the proper formulation in a graph setting (see eq. (12)).

The functional (2) is composed of two terms: a smoothing
term that measures the differences in the components of
the field, and a potential term that measures how far each
component is from a specific value (±1 in the example
above). Consequently, the minimization of the first term leads
to smoother regions, while the minimization of the second
penalizes variations from the minima of the double-well
potential. Given initial conditions with states +1 and states
−1 distributed randomly in the domain, the minimization of

3

the GL functional entails an inherent conflict between the two
terms in the functional, leading to the generation of a transition
region: the diffuse interface. The smoothness of this diffuse
interface is regulated by the parameter ε. For small ε, the state
minimizing the functional contains sharp transitions between
the minima of the double-well potential, while a large ε gives
more weight to the smoothing term so that the transitions are
more gradual.

It is shown in [33] that the ε→ 0 limit of the GL functional,
in the sense of Γ-convergence, is the Total Variation (TV)
semi-norm, so one can write:

GL(u)→Γ ||u||TV . (3)

The advantage of the GL functional is that its L2 gradient flow
leads to a linear differential operator, which allows us to use
spectral methods for minimization.

The diffuse interface description, with its controlled smooth-
ness transition between phases, is attractive for segmentation
problems due to its straightforward way of modeling the
separation of a domain into regions or phases. It has been
used successfully in image impainting [7], [20] and image
segmentation [22]. The standard practice is to introduce an
additional term in the energy functional to escape from trivial
steady-state solutions (e.g., all labels taking on the same
value). This leads to the expression

E(u) = GL(u) + F (u, û), (4)

where F is the additional term, usually called fidelity. This
fidelity term allows the specification of any known information
about the particular task at hand, for example, regions of an
image that belong to a certain class.

B. Application to Semi-Supervised Learning (SSL) on Graphs

Inspired in part by the PDE-based imaging community,
where variational algorithms combining ideas from spectral
methods on graphs with nonlinear edge detection methods are
common [27], Bertozzi and Flenner extended in [5] the L2

gradient flow of the Ginzburg-Landau (GL) energy functional
to the domain of functions on a graph.

The energy E(u) in (4) can be minimized in the L2 sense
using gradient descent. This leads to the following dynamic
equation (modified Allen-Cahn equation):

∂u

∂t
= −δGL

δu
− µδF

δu
= ε∆u− 1

ε
Φ′(u)− µδF

δu
(5)

where ∆ represents the Laplacian operator. A local minimizer
of the energy is obtained by evolving this expression to steady
state. Note that E is not convex, and may have multiple local
minima.

Before continuing further, let us introduce some simple
graph concepts we will be using in subsequent sections.

1) Graph Framework for Large Data Sets: Let G be an
undirected graph G = (V,E), where V and E are the
sets of vertices and edges, respectively. The vertices are the
building blocks of the data set, such as points in Rn or
pixels in an image. The similarity between vertices i and j
is measured by a weight function w(i, j) that satisfies the
symmetric property w(i, j)= w(j, i). A large value of w(i, j)

indicates that vertices i and j are similar to each other, while
a small w(i, j) indicates that they are dissimilar. For example,
an often used similarity measure is the Gaussian function
w(i, j) = exp(−d(i, j)2/σ2), with d(i, j) representing the
Euclidean distance between the points associated with vertices
i and j, and σ2 a positive parameter.

Define W as the matrix Wij = w(i, j), and define the
degree of a vertex i ∈ V as

di =
∑
j∈V

w(i, j). (6)

If D is the diagonal matrix with elements di, then the graph
Laplacian is defined as the matrix L = D−W.

2) Ginzburg-Landau Functional on Graphs: Instead of the
continuous domain of the original functional, the diffuse
interface model of Bertozzi and Flenner expresses the L2 flow
for the discrete graph structure. Thus the graph serves as the
domain in which the energy minimization takes place.

Nonlocal calculus, such as that outlined in [27], provides a
way to generalize the continuous GL formulation to the case
of weighted graphs. It also shows that the Laplace operator
is related to the graph Laplacian matrix defined above, and
that the eigenvectors of the discrete Laplacian converge to
the eigenvectors of the Laplacian [5]. However, to guarantee
convergence to the continuum differential operator in the limit
of large sample size, the matrix L must be correctly scaled [5].
Although there are several ways of doing this, the two methods
used more often are the random walk Laplacian

Lw = D−1L = I−D−1W, (7)

related to Markov processes [51], and the symmetric normal-
ized Laplacian

Ls = D−
1
2 LD−

1
2 = I−D−

1
2 WD−

1
2 . (8)

Since the symmetric property of Ls allows for more efficient
implementations, we will use this operator in all our compu-
tations.

Note that Ls satisfies:

(Lsu)i =
1√
di

∑
j

w(i, j)

(
ui√
di
− uj√

dj

)
(9)

〈u,Lsu〉 =
1

2

∑
i,j

w(i, j)

(
ui√
di
− uj√

dj

)2

(10)

for all u ∈ Rn. Here the subscript i refers to the ith coordinate
of the vector, and the brackets denote the standard dot product.
Note also that Ls has nonnegative, real-valued eigenvalues,
including 0.

Likewise, it is important to point out that for tasks such
as data classification, the use of a graph representation has
the advantages of providing a way to deal with nonlinearly
separable classes as well as simplifying the processing of high
dimensional data.

The GL functional on graphs is then expressed as

GL(u) =
ε

2
〈u,Lsu〉+

1

4ε

∑
i∈V

(
u2
i − 1

)2
, (11)

4

where ui is the (real-valued) state of node i. The first term
replaces the gradient term in (2), and the second term is the
double-well potential function with minima at ±1, appropriate
for binary classifications.

3) Semi-Supervised Learning (SSL) on Graphs: In the
graph version of the GL functional, and in general in graph-
based learning methods, the graph is constructed such that the
edges represent the similarities in the data set and the nodes
have an associated real state that encodes, with an appropriate
thresholding operation, class membership.

In addition, in some data sets, the label of a small fraction
of data points is known beforehand. The possibility of using
this a priori information considerably improves the learning
accuracy, explaining in part the popularity of semi-supervised
learning (SSL) methods. The graph generalization of the
diffuse interface model handles this condition effortlessly by
using the labels of known points. The GL functional for SSL
is expressed as:

E(u) =
ε

2
〈u,Lsu〉+

1

4ε

∑
i∈V

(
u2
i − 1

)2
+
∑
i∈V

µi
2

(ui − ûi)2
. (12)

The final term in the sum is the new fidelity term that enforces
those label values that are known beforehand. µi is a parameter
that takes the value of a positive constant µ if i is a fidelity
node and zero otherwise, and ûi is the known value of fidelity
node i.

Therefore, given an initial state ui of each vertex i, the
problem consists of minimizing the GL functional with fidelity
term. The classes are then obtained by thresholding the values
of ui to the closer of either 1 or −1. The result is a
very efficient method for binary data segmentation. In the
following sections, the modifications introduced to generalize
this functional to multiclass segmentation are described.

IV. MULTICLASS GINZBURG-LANDAU APPROACH

A. Extension to Multiclass Segmentation

Given ND data points, we generalize the label vector u
to a label matrix U = (u1, . . . ,uND

)T . Rather than node i
adopting a single state ui ∈ R, it now adopts a composition
of states expressed by a vector ui ∈ RK where the kth
component of ui is the strength with which it takes on class
k. The matrix U has dimensions ND × K, where K is the
total number of possible classes.

For each node i, we require the vector ui to be an element
of the Gibbs simplex ΣK , defined as

ΣK :=

{
(x1, . . . , xK) ∈ [0, 1]K

∣∣∣∣∣
K∑
k=1

xk = 1

}
. (13)

Vertex k of the simplex is given by the unit vector ek,
whose kth component equals 1 and all other components
vanish. These vertices correspond to pure phases, where the
node belongs exclusively to class k. Note that the simplex
formulation has a straightforward probabilistic interpretation,
with ui representing the probability distribution over the K
classes.

The multiclass GL energy functional for the phase field
approach on graphs is written as:

E(U) =
ε

2
〈U,LsU〉+

1

2ε

∑
i∈V

(
K∏
k=1

1

4
‖ui − ek‖2L1

)
+
∑
i∈V

µi
2
‖ui − ûi‖2 , (14)

where

〈U,LsU〉 = trace(UTLsU),

and ûi is a vector indicating prior class knowledge of sample
i. We set ûi = ek if node i is known to be in class k.

As mentioned before, the first (smoothing) term in the GL
functional (14) measures variations in the vector field. The
simplex representation has the advantage that, like in Potts-
based models but unlike in some other multiclass methods,
the penalty assigned to differently labeled neighbors is in-
dependent of the integer ordering of the labels. The second
(potential) term drives the system closer to the vertices of the
simplex, with the use of an L1 norm preventing the emergence
of an undesirable minimum at the center of the simplex, as
would happen with an L2 norm for large K. This potential
aims to provide a clear way to calculate class memberships, as
the phase composition is purer near the vertices of the simplex.
The compromise between the smoothing and potential terms
is established through the constant ε. The third (fidelity) term
enables the encoding of a priori information.

B. Energy Minimization

Following [5], we use a convex splitting scheme to minimize
the GL functional in the phase field approach. The energy
functional (14) is decomposed into convex and concave parts
as:

E(U) = Econvex(U) + Econcave(U)

Econvex(U) =
ε

2
〈U,LsU〉+

C

2
〈U,U〉

Econcave(U) =
1

2ε

∑
i∈V

K∏
k=1

1

4
‖ui − ek‖2L1

+
∑
i∈V

µi
2
‖ui − ûi‖2L2

− C

2
〈U,U〉

with C ∈ R denoting a constant that is chosen to guarantee
the convexity/concavity of the energy terms. Under the right
conditions, this approach results in an unconditionally stable
time-discretization scheme for gradient descent [22], [24], [53]
of the form

Un+1
ik +dt

δEconvex

δUik
(Un+1

ik) = Unik−dt
δEconcave

δUik
(Unik). (15)

Evaluating the functional derivatives, we write this equation
in matrix form as

Un+1 + dt
(
εLsU

n+1 + CUn+1
)

= Un − dt
(

1

2ε
Tn + µ(Un − Û)− CUn

)
, (16)

5

where

Tik =

K∑
l=1

1

2
(1− 2δkl) ‖ui − el‖L1

K∏
m=1
m 6=l

1

4
‖ui − em‖2L1

,

(17)
µ is a diagonal matrix with elements µi, and Û =
(û1, . . . , ûND

)T .
Solving (16) for Un+1 gives the iteration equation

Un+1 = B−1

[
(1 + C dt) Un − dt

2ε
Tn − dtµ(Un − Û)

]
(18)

where
B = (1 + C dt)I + ε dtLs. (19)

This implicit scheme allows the evolution of U to be numer-
ically stable regardless of the time step dt, in spite of the
numerical “stiffness” of the underlying differential equations
which could otherwise force dt to be impractically small.
(Note, though, that stability is a separate issue from accuracy.)

In general, after the update, the phase field is no longer on
the ΣK simplex. Consequently, we use the procedure in [14]
to project back to the simplex.

Computationally, the schemes’ numerical efficiency is in-
creased by using a low-dimensional subspace spanned by
only a small number of eigenfunctions. Let X be the matrix
of eigenvectors of Ls and Λ be the diagonal matrix of
corresponding eigenvalues. We now write Ls as its eigende-
composition Ls = XΛXT ,

B = X [(1 + C dt)I + ε dtΛ] XT , (20)

but we approximate X by a truncated matrix retaining only
Ne eigenvectors (Ne � ND), to form a matrix of dimension
ND×Ne. The term in brackets is simply a diagonal Ne×Ne
matrix. This allows B to be calculated rapidly, but more im-
portantly it allows the update step (18) to be decomposed into
two significantly faster matrix multiplications (as discussed
below), while sacrificing little accuracy in practice.

For initialization, the phase compositions of the fidelity
points are set to the vertices of the simplex corresponding
to the known labels, while the phase compositions of the rest
of the points are set randomly.

The energy minimization proceeds until a steady state
condition is reached. Once the change of the norm of the
vector field in subsequent iterations falls below a threshold,
the system is no longer evolving and the energy decrement is
negligible. Consequently, the calculation is stopped when

maxi ‖uin+1 − ui
n‖2

maxi ‖uin+1‖2
< η, (21)

where η represents a given small positive constant. The final
classes are obtained by assigning class k to node i if ui is
closest to vertex ek on the Gibbs simplex.

The specific algorithm is outlined in Figure 1. Note that
other operator splitting methods have been studied for mini-
mization problems (e.g. [36]). Ours however has the following
advantages: (i) it is direct (i.e. it does not require the solution
of further minimization problems), (ii) the resolution can
be adjusted by increasing the number of eigenvectors Ne

used in the representation of the phase field, and (iii) it has
low complexity. To see this final point, observe that each
iteration of the multiclass GL algorithm has only O(NDKNe)
operations for the main loop, since matrix Z in Figure 1 only
has dimensions Ne × K, and then O(NDK logK) for the
projection to the simplex. Usually, Ne � ND and K � ND,
so the dominant factor is simply the size of the data set ND. In
addition, it is generally the case that the number of iterations
required for convergence is moderate (around 200 iterations).
Thus, practically speaking, the complexity of the algorithm is
linear.

V. MBO REDUCTION OF THE GINZBURG-LANDAU
ENERGY FUNCTIONAL

Given that the modified Allen-Cahn equation (5), resulting
from the L2 gradient flow of the GL energy functional, pro-
duces an efficient method for data segmentation when adapted
to function estimation on graphs, a natural question is what
other adaptations of this formulation can be equally effective
when expressed in the graph domain. The immediate answer
comes from the relation between the Allen-Cahn equation and
the motion by mean curvature.

Let us start by reviewing this connection in the contin-
uous setting. In [39], Merriman, Bence and Osher propose
an algorithm to approximate motion by mean curvature, or
motion in which normal velocity equals mean curvature, using
threshold dynamics. The authors note that if one applies the
heat equation to an interface, then the diffusion blunts the
sharp points of the boundary, but has very little effect on
the flatter regions. Therefore, one can imagine that diffusion
creates some sort of motion by mean curvature, providing that
we specify the boundaries of the moving set.

Given a phase field u(z, t), consider the basic (unmodified)
Allen-Cahn equation, namely equation (5) without the fidelity
term:

∂u

∂t
= ε∆u− 1

ε
Φ′(u). (22)

For small values of ε, the following time-splitting scheme can
be used numerically to evolve the Allen-Cahn equation:

1) The first step is propagation using:
∂u

∂t
= ε∆u (23)

2) The second step is propagation using:
∂u

∂t
= −1

ε
Φ′(u) (24)

Note, however, that in the ε → 0 limit, the second step is
simply thresholding [39]. Thus, as ε → 0, the time splitting
scheme above consists of alternating between diffusion and
thresholding steps.

It has been shown [44] that in the limit ε→ 0, the rescaled
solutions uε(z, t/ε) of (22) yield motion by mean curvature
of the interface between the two phases of the solutions. This
motivates the two sequential steps of the MBO scheme:

1) Diffusion. Let un+ 1
2 = S(δt)un where S(δt) is the

propagator (by time δt) of the standard heat equation:
∂u

∂t
= ∆u. (25)

6

Fig. 1: Multiclass GL algorithm

Require: ε, dt,ND, Ne,K,µ, Û,Λ,X
Ensure: out = Uend

C ← µ+ 1
ε

Y ← [(1 + C dt)I + ε dtΛ]
−1

XT

for i = 1→ ND do
U 0
ik ← rand((0, 1)), U0

ik ← projectToSimplex(ui
0). If µi > 0, U 0

ik ← Û 0
ik

end for
n← 1
while Stop criterion not satisfied do

for i = 1→ ND, k = 1→ K do
T n
ik ←

∑K
β=1

1
2 (1− 2δkβ) ‖uin − eβ‖L1

∏K
γ=1,γ 6=β

1
4 ‖ui

n − eγ‖2L1

end for
Z← Y

[
(1 + C dt) Un − dt

2ε Tn − dtµ(Un − Û)
]

Un+1 ← XZ
for i = 1→ ND do

ui
n+1 ← projectToSimplex(ui

n+1)
end for
n← n+ 1

end while

2) Thresholding. Let

un+1 =

{
1 if un+ 1

2 ≥ 0,

−1 if un+ 1
2 < 0.

Barles [2] and Evans [23] have proven rigorously that this
scheme approximates motion by mean curvature.

A. Graph Formulation

The motion by mean curvature of the MBO scheme can be
generalized to the case of functions on a graph in much the
same way as the procedure followed for the modified Allen-
Cahn equation (5) in [5]. Merkurjev et al. have pursued this
idea in [38], where a modified MBO scheme on graphs has
been applied to the case of binary segmentation. The authors
apply a two-step time splitting scheme to (5) so that the second
step is the same as the one in the original MBO scheme, and
then replace the ∆u term with a more general graph term
−Lsu. The discretized version of the algorithm is:

1) Heat equation with forcing term:

un+ 1
2 − un

dt
= −Lsu

n − µ(un − û). (26)

2) Thresholding:

un+1
i =

{
1, if un+ 1

2
i > 0,

−1, if un+ 1
2

i < 0.

Here, after the second step, uni can take only two values of 1 or
−1; thus, this method is appropriate for binary segmentation.
Note that the fidelity term scaling can be different from the
one in (5).

In practice, it can be productive to repeat the diffusion
step a number of times before thresholding. In order to keep

the convention that one iteration of the diffusion-thresholding
procedure corresponds to one time step, we divide dt by the
number of diffusion steps per iteration, which we denote NS .

B. Extension to Multiclass Segmentation

Using the standard Gibbs-simplex ΣK defined in Section
IV, the multiclass extension of the algorithm in [38] is straight-
forward. The notation is the same as in the previous section:
we use a matrix U to represent the phase composition of
nodes. The second step of the algorithm is modified, however,
so that the thresholding is converted to the displacement of the
vector field variable towards the closest vertex in the Gibbs
simplex. In other words, now in the second step the row vector
ui
n+ 1

2 of step 1 is projected back to the simplex (using the
approach outlined in [14] as before) and then a pure phase
given by the vertex in the ΣK simplex closest to ui

n+ 1
2 is

assigned to be the new phase composition of node i.
In summary, the new algorithm consists of alternating be-

tween the following two steps to obtain approximate solutions
Un at discrete times:

1) Heat equation with forcing term:

Un+ 1
2 −Un

dt
= −LsU

n − µ(Un − Û). (27)

2) Thresholding:
ui
n+1 = ek, (28)

where vertex ek is the vertex in the simplex closest to
projectToSimplex(ui

n+ 1
2).

As for the multiclass GL algorithm, when a label is known, it
is represented by the corresponding vertex in the ΣK simplex.
The final classification is achieved by assigning node i to class
k if if the kth component of ui is one. Again, as in the binary

7

Fig. 2: Multiclass MBO Algorithm

Require: dt,ND, Ne, NS ,K,µ, Û,Λ,X
Ensure: out = Uend

Y ←
(
I + dt

NS
Λ
)−1

XT

for i = 1→ ND do
U 0
ik ← rand((0, 1)), ui

0 ← projectToSimplex(ui
0). If µi > 0, U 0

ik ← Û 0
ik

end for
n← 1
while Stop criterion not satisfied do

for s = 1→ NS do
Z← Y

[
Un − dt

NS
µ(Un − Û)

]
Un+1 ← XZ

end for
for i = 1→ ND do

ui
n+1 ← projectToSimplex(ui

n+1)
ui
n+1 ← ek, where k is closest simplex vertex to ui

n+1

end for
n← n+ 1

end while

case, the diffusion step can be repeated a number of times
before thresholding and when that happens, dt is divided by
the number of diffusion iterations NS .

As in the previous section, we use an implicit numerical
scheme. For the MBO algorithm, the procedure involves
modifying (27) to apply Ls to Un+ 1

2 instead of to Un. This
gives the diffusion step

Un+ 1
2 = B−1

[
Un − dtµ(Un − Û)

]
(29)

where
B = I + dtLs. (30)

As before, we use the eigendecomposition Ls = XΛXT to
write

B = X (I + dtΛ) XT , (31)

which we approximate using the first Ne eigenfunctions. The
initialization procedure and the stopping criterion are the same
as in the previous section.

The multiclass MBO algorithm is summarized in Figure 2.
Its complexity is O(NDKNeNS) operations for the main
loop, O(NDK logK) operations for the projection to the
simplex and O(NDK) operations for thresholding. As for
the multiclass GL algorithm, Ne � ND and K � ND.
Furthermore NS needs to be set to three, and due to the
thresholding step, we find that extremely few iterations (e.g.,
6) are needed to reach steady state. Thus, in practice, the
complexity of this algorithm is linear as well, and typical
runtimes are very rapid as shown in Table III.

VI. EXPERIMENTAL RESULTS

We have tested our algorithms on synthetic data, grayscale
and color images, and the MNIST, COIL and WebKB bench-
mark data sets. In all cases, we compute the symmetric

normalized graph Laplacian matrix Ls, of expression (8),
using N -neighborhood graphs: in other words, vertices i and
j are connected only if i is among the N nearest neighbors of
j or if j is among the N nearest neighbors of i. Otherwise,
we set w(i, j) = 0. This results in a sparse matrix, making
calculations and algorithms more tractable. In addition, for the
similarity function we use the local scaling weight function of
Zelnik-Manor and Perona [43], defined as:

w(i, j) = exp

(
− d(i, j)2√

τ(i)τ(j)

)
(32)

where d(i, j) is some distance measure between vertices i and
j, such as the L2 distance, and

√
τ(i) = d(i, k) defines a local

value for each vertex i, parametrized by M , with k being the
index of the M th closest vertex to i.

With the exception of the images, all the results and
comparisons with other published methods are summarized
in Tables I and II. Due to the arbitrary selection of the
fidelity points, our reported values correspond to averages
obtained over 10 runs with different random selections. The
timing results and number of iterations of the two methods
are shown in Tables III and IV, respectively. The methods
are labeled as “multiclass GL” and “multiclass MBO”. These
comparisons show that our methods exhibit a performance that
is competitive with or better than the current state-of-the-art
segmentation algorithms.

Parameters are chosen to be compatible between the meth-
ods. For the multiclass GL method, the convexity constant
used is: C = µ + 1

ε . This is the minimum constant that
guarantees the convexity and concavity of the terms in the
energy partition of the convex splitting strategy employed.
For the multiclass MBO method, as discussed in the previous
section, the diffusion step can be repeated a number of times

8

before thresholding. In all of our results, we run the diffusion
step three times before any thresholding is done (NS = 3).

To compute the eigenvectors and eigenvalues of the sym-
metric graph Laplacian, we use fast numerical solvers. As we
only need to calculate a portion of the eigenvectors to get
good results, we use the Rayleigh-Chebyshev procedure of
[1] for computing all the eigendecompositions. This numerical
solver is especially efficient for producing a few of the smallest
eigenvectors of a sparse symmetric matrix. For example, for
the MNIST data set of 70,000 images, it was only necessary
to calculate 300 eigenvectors, which is less than 0.5% of the
data set size. This is one of the factors that makes our methods
very efficient.

A. Synthetic Data

The synthetic data set we tested our method against is the
three moons data set. It is constructed by generating three half
circles in R2. The two half top circles are unit circles with
centers at (0, 0) and (3, 0). The bottom half circle has radius
1.5 and the center at (1.5, 0.4). Five hundred points from each
of those three half circles are sampled and embedded in R100

by adding Gaussian noise with standard deviation of 0.14 to
each of the 100 components of each embedded point. The
dimensionality of the data set, together with the noise, makes
segmentation a significant challenge.

The weight matrix of the graph edges was calculated using
N = 10 nearest neighbors and local scaling based on the 17th

closest point (M = 17). The fidelity term was constructed by
labeling 25 points per class, 75 points in total, corresponding
to only 5% of the points in the data set.

The multiclass GL method used the following parameters:
20 eigenvectors, ε = 1, dt = 0.1, µ = 30, η = 10−7. The
method was able to produce an average of 98.4% of correct
classification, with a corresponding computation time of 0.16
s per run on a 2.4 GHz Intel Core i2 Quad without any parallel
processing.

Analogously, the multiclass MBO method used the follow-
ing parameters: 20 eigenvectors, dt = 0.1, µ = 30, η = 10−7.
It was able to segment an average of 99.12% of the points
correctly over 10 runs with only 3 iterations and about 0.01 s
of computation time. One of the results obtained is shown in
Figure 3.

Table I gives published results from other related methods,
for comparison. Note that the results for p-Laplacians [11],
Cheeger cuts [48] and binary GL are for the simpler binary
problem of two moons (also embedded in R100). While,
strictly speaking, these are unsupervised methods, they all
incorporate prior knowledge such as a mass balance constraint.
We therefore consider them comparable to our SSL approach.
The “tree GL” method [25] uses a scalar multiclass GL
approach with a tree metric. It can be seen that our methods
achieve the highest accuracy on this test problem.

B. Image Segmentation

a) Grayscale (single channel) Image: We tested our
algorithms on the image of figures shown in Figure 4a. This
is a 191 × 196 pixel grayscale image, to be divided into

Fig. 3: Segmentation of three moons using multiclass MBO
(98.4667% correct).

five classes: black, dark gray, medium gray, light gray and
white. To construct the weight matrix, we use feature vectors
corresponding to a pixel’s x-coordinate, y-coordinate, and
intensity. For the fidelity term, 1,500 or 4% of the points were
randomly chosen.

A local scaling graph with N = 30 and M = 30 is
constructed and used by both our algorithms.

The multiclass Ginzburg-Landau method was applied using
the following parameters: 10 eigenvectors, ε = 1, dt = 0.5,
µ = 50 and η = 10−7. It was able to segment the classes
perfectly, with an average time of 4.1 s. The original image
as well as the segmentation are included in Figure 4. In each
segmentation, the white regions correspond to the identified
class.

The multiclass MBO method used the following parameters:
10 eigenvectors, dt = 0.5, µ = 50, η = 10−7. The algorithm
was able to segment all the points correctly in 2 iterations and
0.232 s.

We compare our result to the method of Li and Kim
[37], which also segments the image perfectly. However, their
method requires additional information, such as the densities
of each class, that we do not need in our method.

b) Color (multichannel) Image: We then tested our al-
gorithms on the color image of cows shown in Figure 5a. This
is a 213 × 320 color image, to be divided into four classes:
sky, grass, black cow and red cow.

To construct the weight matrix, we use feature vectors
defined as the set of intensity values in the neighborhood of a
pixel. The neighborhood is a patch of size 5× 5. Red, green
and blue channels are appended, resulting in a feature vector
of dimension 75. A local scaling graph with N = 30 and
M = 30 is constructed for both algorithms. For the fidelity
term, 2.6% of labeled pixels are used.

The multiclass Ginzburg-Landau method used the following
parameters: 30 eigenvectors, ε = 1, dt = 0.1, µ = 50 and
η = 10−7. The average time for segmentation using different
fidelity sets was 19.9 s.

The multiclass MBO method used the following parameters:
30 eigenvectors, dt = 0.1, µ = 50, η = 10−7. The average
time for segmentation over 10 runs was around 1.2 s, and there
were 11 iterations.

One of the results of each of our two methods (using the
same fidelity set) is depicted in Figure 5. It can be seen that
both methods are able to identify all the classes, with almost
no perceptible difference between the two results. Most of the

9

TABLE I: Results for benchmark data sets: Moons, MNIST, COIL and WebKB

Two/Three moons
Method Accuracy

spectral clustering [25] 80%
p-Laplacian [11] 94%

Cheeger cuts [48] 95.4%
tree GL [25] 97.4%

binary GL [5] 97.7%
multiclass GL 98.4%

multiclass MBO 99.12%

MNIST
Method Accuracy

p-Laplacian [11] 87.1%
multicut normalized 1-cut [30] 87.64%

linear classifiers [34], [35] 88%
Cheeger cuts [48] 88.2%

boosted stumps [32], [35] 92.3-98.74%
transductive classification [49] 92.6%

tree GL [25] 93.0%
k-nearest neighbors [34], [35] 95.0-97.17%

neural/convolutional nets [16], [34], [35] 95.3-99.65%
nonlinear classifiers [34], [35] 96.4-96.7%

multiclass GL 96.8%
multiclass MBO 96.91%
SVM [18], [34] 98.6-99.32%

COIL
Method Accuracy

k-nearest neighbors [47] 83.5%
LapRLS [3], [47] 87.8%

sGT [31], [47] 89.9%
SQ-Loss-I [47] 90.9%

MP [47] 91.1%
multiclass GL 91.4%

multiclass MBO 91.46%

WebKB
Method Accuracy

vector method [12] 64.47%
k-nearest neighbors (k = 10) [12] 72.56%

centroid (normalized sum) [12] 82.66%
naive Bayes [12] 83.52%

SVM (linear kernel) [12] 85.82%
multiclass GL 87.3%

multiclass MBO 88.48%

TABLE II: WebKB results with varying fidelity percentage

Method 10% 15% 20% 25% 30%

WebKB results for Multiclass GL (% correct) 81.5% 84.2% 85.4% 86.7% 87.3%

WebKB results for Multiclass MBO (% correct) 83.71% 85.75% 86.81% 87.74% 88.48%

TABLE III: Comparison of timings (in seconds)

Data set three moons grayscale image color image MNIST COIL WebKB

Graph Calculation 0.771 19.96 645.34 6183.1 0.95 399.35

Eigenvector Calculation 0.331 210.10 190.93 1683.5 0.19 64.78

Multiclass GL 0.163 4.08 19.92 811.5 2.31 6.97

Multiclass MBO 0.013 0.23 1.20 15.4 0.03 0.05

TABLE IV: Comparison of number of iterations

Data set three moons grayscale image color image MNIST COIL WebKB

Multiclass GL 140 90 200 460 700 275

Multiclass MBO 3 2 11 7 6 7

TABLE V: Confusion Matrix for the MNIST Data Segmentation - Multiclass GL

Obtained/True 0 1 2 3 4 5 6 7 8 9

0 6844 1 43 4 3 16 21 2 19 19

1 6 7809 36 8 35 2 14 62 58 15

2 5 22 6733 45 2 4 1 27 19 7

3 0 3 20 6882 1 91 0 1 89 92

4 1 16 6 2 6626 4 7 15 28 75

5 9 0 3 75 0 6072 28 2 125 14

6 31 5 11 3 23 65 6802 0 31 4

7 2 16 108 45 11 7 0 7078 19 110

8 1 2 22 42 4 15 3 2 6365 20

9 4 3 8 35 119 37 0 104 72 6602

10

TABLE VI: Confusion Matrix for the MNIST Data Segmentation - MBO Scheme

Obtained/True 0 1 2 3 4 5 6 7 8 9

0 6844 20 41 3 3 15 21 1 20 17

1 5 7789 32 8 34 1 14 63 51 14

2 5 22 6731 42 2 4 1 23 19 8

3 0 3 20 6890 1 86 0 1 81 90

4 1 17 6 2 6625 3 7 12 28 67

5 9 0 3 70 0 6077 28 2 109 14

6 31 5 11 3 22 69 6800 0 29 5

7 2 16 117 44 12 9 0 7093 20 101

8 2 2 21 46 4 17 5 2 6398 22

9 4 3 8 33 121 32 0 96 70 6620

mistakes made correspond to identifying some borders of the
red cow as part of the black cow.

(a) Original Image (b) Class 1

(c) Class 2 (d) Class 3

(e) Class 4 (f) Class 5

Fig. 4: Grayscale image segmentation

C. MNIST Data

The MNIST data set [35] is composed of 70, 000 28 × 28
images of handwritten digits 0 through 9. Examples of entries
can be found in Figure 6. The task is to classify each of the
images into the corresponding digit. The images include digits
from 0 to 9; thus, this is a 10 class segmentation problem.

To construct the weight matrix, we used N = 8 nearest
neighbors with local scaling based on the 8th closest neighbor
(M = 8). Note that we perform no preprocessing, i.e. the
graph is constructed using the 28×28 images. For the fidelity
term, 250 images per class (2500 images corresponding to
3.6% of the data) are chosen randomly.

The multiclass GL method used the following parameters:
300 eigenvectors, ε = 1, dt = 0.15, µ = 50 and η = 10−7.
The complete set of 70,000 images was segmented with an

(a) Original Image

(b) Black Cow: multiclass GL (c) Black Cow: multiclass MBO

(d) Red Cow: multiclass GL (e) Red Cow: multiclass MBO

(f) Grass: multiclass GL (g) Grass: multiclass MBO

(h) Sky: multiclass GL (i) Sky: multiclass MBO

Fig. 5: Color image segmentation

11

average accuracy of 96.8% of the digits classified correctly in
an average time of 811 s. The averages are obtained over 10
runs. The confusion matrix for the best result obtained is in-
cluded in Table V. Most of the mistakes were in distinguishing
digits 4 and 9, and digits 5 and 8.

The multiclass MBO method used the following parameters:
300 eigenvectors, dt = 0.15, µ = 50, η = 10−7. The algorithm
was able to segment an average of 96.91% of the digits
correctly over 10 runs in only 4 iterations and 15.382 s. We
display the confusion matrix in Table VI. Note that most of
the mistakes were in distinguishing digits 4 and 9, and digits
2 and 7.

Table I compares our results with those from other methods
in the literature. As with the three moon problem, some
of these are based on unsupervised methods but incorporate
enough prior information that they can fairly be compared with
SSL methods. The methods of linear/nonlinear classifers, k-
nearest neighbors, boosted stumps, neural and convolutional
nets and SVM are all supervised learning approaches, taking
60,000 of the digits as a training set and 10,000 digits as a
testing set [35], in comparison to our SSL approaches where
we take only 3.6% of the points for the fidelity term. Our
algorithms are nevertheless competitive with, and in most
cases outperform, these supervised methods. Moreover, we
perform no preprocessing or initial feature extraction on the
image data, unlike most of the other methods we compare with
(we did exclude from the comparison, however, methods that
explicitly deskewed the image). While there is a computational
price to be paid in forming the graph when data points use all
784 pixels as features (see graph calculation time in Table III),
this is a one-time operation that conceptually simplifies our
approach.

Fig. 6: Examples of digits from the MNIST data base

D. COIL dataset

We evaluated our performance on the benchmark COIL
data set [13], [41]. This is a set of color 128 × 128 images
of 100 objects, taken at different angles. The red channel
of each image was then downsampled to 16 × 16 pixels by
averaging over blocks of 8× 8 pixels. Then 24 of the objects
were randomly selected and then partitioned into six classes.
Discarding 38 images from each class leaves 250 per class,
giving a data set of 1500 data points.

To construct the weight matrix, we used N = 4 nearest
neighbors with local scaling based on the 4th closest neighbor

(M = 4). The fidelity term was constructed by labeling 10%
of the points, selected at random.

For multiclass GL, the parameters were: 50 eigenvectors,
ε = 1, dt = 0.2, µ = 100 and η = 10−7. This resulted in
91.4% of the points classified correctly (average) in 2.3 s.

For multiclass MBO, the parameters were: 50 eigenvectors,
dt = 0.2, µ = 100, η = 10−7. We obtained an accuracy
of 91.46%, averaged over 10 runs. The procedure took 6
iterations and 0.03 s.

Comparative results reported in [47] are shown in Table I.
These are all SSL methods (with the exception of k-nearest
neighbors which is supervised), using 10% fidelity just as we
do. Our results are of comparable or greater accuracy.

E. WebKB dataset

Finally, we tested our methods on the task of text clas-
sification on the WebKB data set [17]. This is a collection
of webpages from Cornell, Texas, Washington and Wisconsin
universities, as well as other miscellaneous pages from other
universities. The webpages are to be divided into four classes:
project, course, faculty and student. The data set is prepro-
cessed as described in [12].

To construct the weight matrix, we used 575 nearest neigh-
bors. Tfidf term weighting [12] is used to represent the website
feature vectors. They were then normalized to unitary length.
The weight matrix points are calculated using cosine similarity.

For the multiclass GL method, the parameters were: 250
eigenvectors, ε = 1, dt = 1, µ = 50 and η = 10−7. The
average accuracies obtained are: 81.5%, 84.2%, 85.4%, 86.7%
and 87.3% over fidelity sets of 10%, 15%, 20%, 25% and 30%
of the points, respectively. The average computation time is
6.97 s.

For the multiclass MBO method, the parameters were: 250
eigenvectors, dt = 1, µ = 4, η = 10−7. We obtained average
accuracies of: 83.71%, 85.75%, 86.81%, 87.74% and 88.48%
over fidelity sets of 10%, 15%, 20%, 25% and 30% of the
points, respectively. The procedure took an average of 0.05 s
and 7 iterations.

We compare our results with those of several supervised
learning methods reported in [12], shown in Table I. For
these methods, two thirds of the data was used for training,
and one third for testing. Our SSL methods obtain higher
accuracy, using only 20% fidelity (for multiclass MBO). Note
also that a larger sample of points for the fidelity term reduces
the error in the classification results, as shown in Table II.
Nevertheless, the accuracy is high even for the smallest fidelity
sets. Therefore, the methods appear quite adequate for the
SSL setting where only a few labeled data points are known
beforehand.

Multiclass GL and MBO: All the results reported point
out that both multiclass GL and multiclass MBO perform well
in terms of data segmentation accuracy. While the ability to
tune multiclass GL can be an advantage, multiclass MBO is
simpler and, in our examples, displays even better performance
in terms of its greater accuracy and tiny number of iterations
required. The relative strength and speed of multiclass MBO
may not always hold, but the avoidance of a nonconvex

12

functional minimization that takes place in multiclass GL may
explain the accuracy and speed increase. Exploring the under-
lying connections of the energy evolution of these methods and
the energy landscape for the relaxed Cheeger cut minimization
recently established in [9] are to be explored in future work.

VII. CONCLUSIONS

We have presented two graph-based algorithms for mul-
ticlass classification of high dimensional data. The two al-
gorithms are based on the diffuse interface model using the
Ginzburg-Landau functional, and the multiclass extension is
obtained using the Gibbs simplex. The first algorithm min-
imizes the functional using gradient descent and a convex-
splitting scheme. The second algorithm executes a simple
scheme based on an adaptation of the classical numerical MBO
method. It uses fewer parameters than the first algorithm, and
while this may in some cases make it more restrictive, in our
experiments it was highly accurate and efficient. Both of these
algorithms demonstrate how methods motivated by the PDE
literature can be productively adapted to graphs, producing
effective multiclass data segmentation methods.

Testing the algorithms on synthetic data, images and bench-
mark data sets shows that the results are competitive with
or better than some of the most recent and best published
algorithms in the literature. In addition, our methods have
several advantages. First, they are simple and efficient, avoid-
ing the need for intricate function minimizations or heavy
preprocessing of data. Second, a relatively small proportion of
fidelity points is needed for producing an accurate result. For
most of our data sets, we used at most 10% of the data points
for the fidelity term; for synthetic data and the two images,
we used no more than 5%. Furthermore, the minimization
obtained is not sensitive to the initial state. As long as the
fidelity set contains samples of all classes in the problem, a
random initialization is enough to produce good multiclass
segmentation results. Finally, our methods do not use one-vs-
all or sequences of binary segmentations that are needed for
some other multiclass methods. We therefore avoid the bias
and extra processing that is often inherent in those methods.

Our algorithms benefit from the sparsity of the neigh-
borhood graphs generated by the local scaling procedure of
Perona and Zelnik-Manor [43], as well as from the fast
numerical Rayleigh-Chebyshev method of Anderson [1] used
to find a subset of eigenvalues and eigenvectors of the resulting
graph Laplacian matrices.

In all of the data sets we have studied, multiclass MBO
performed better than multiclass GL in terms of accuracy and
convergence time. Nevertheless, we anticipate that more intri-
cate geometries could impair its effectiveness. In those cases,
multiclass GL might still perform well, due to the additional
control provided by tuning ε to increase the thickness of the
interfaces, producing smoother decision functions.

ACKNOWLEDGMENT

The authors would like to thank Chris Anderson for pro-
viding the code for the Rayleigh-Chebyshev procedure of [1].
This work was supported by ONR grants N000141210838,

N000141210040, N0001413WX20136, AFOSR MURI grant
FA9550-10-1-0569, NSF grants DMS-1118971 and DMS-
0914856. Ekaterina Merkurjev is also supported by an NSF
graduate fellowship.

REFERENCES

[1] C. Anderson, “A Rayleigh-Chebyshev procedure for finding the small-
est eigenvalues and associated eigenvectors of large sparse Hermitian
matrices,” J. Comput. Phys., vol. 229, pp. 7477–7487, 2010.

[2] G. Barles and C. Georgelin, “A simple proof of convergence for an
approximation scheme for computing motions by mean curvature,” SIAM
Journal on Numerical Analysis, vol. 32, no. 2, pp. 484–500, 1995.

[3] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: A
geometric framework for learning from labeled and unlabeled examples,”
The Journal of Machine Learning Research, vol. 7, pp. 2399–2434,
2006.

[4] L. Bertelli, S. Chandrasekaran, F. Gibou, and B. S. Manjunath, “On the
length and area regularization for multiphase level set segmentation,”
Int. J. Comput. Vis., no. 90, pp. 267–282, 2010.

[5] A. Bertozzi and A. Flenner, “Diffuse interface models on graphs
for classification of high dimensional data,” Multiscale Modeling &
Simulation, vol. 10, no. 3, pp. 1090–1118, 2012.

[6] A. Bertozzi and Y. van Gennip, “Gamma-convergence of graph
Ginzburg-Landau functionals,” Advanced in Differential Equations,
vol. 17, no. 11–12, pp. 1115–1180, 2012.

[7] A. Bertozzi, S. Esedog̃lu, and A. Gillette, “Impainting of binary im-
ages using the Cahn-Hilliard equation,” IEEE Transactions on Image
Processing, vol. 16, no. 1, pp. 285–291, 2007.

[8] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy min-
imization via graph cuts,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 23, no. 11, pp. 1222 –1239, 2001.

[9] X. Bresson, T. Laurent, D. Uminsky, and J. H. von Brecht, “Convergence
and energy landscape for Cheeger cut clustering,” Advances in Neural
Information Processing Systems, 2012.

[10] X. Bresson, X.-C. Tai, T. F. Chan, and A. Szlam, “Multi-class trans-
ductive learning based on `1 relaxations of Cheeger cut and Mumford-
Shah-Potts model,” UCLA CAM Report 12-03, 2012.

[11] T. Bühler and M. Hein, “Spectral clustering based on the graph p-
Laplacian,” in Proceedings of the 26th Annual International Conference
on Machine Learning. ACM, 2009, pp. 81–88.

[12] A. Cardoso, “Datasets for single-label text categorization.” [Online].
Available: http://www.ist.utl.pt/˜acardoso/datasets/

[13] O. Chapelle, B. Schölkopf, and A. Zien, Eds., Semi-Supervised
Learning. Cambridge, MA: MIT Press, 2006. [Online]. Available:
http://www.kyb.tuebingen.mpg.de/ssl-book

[14] Y. Chen and X. Ye, “Projection onto a simplex,” arXiv preprint
arXiv:1101.6081, 2011.

[15] F. Chung, Spectral Graph Theory. American Mathematical Society,
1997, vol. 92.

[16] D. Cireşan, U. Meier, J. Masci, L. Gambardella, and J. Schmidhuber,
“Flexible, high performance convolutional neural networks for image
classification,” in Proceedings of the Twenty-Second international joint
conference on Artificial Intelligence-Volume Volume Two. AAAI Press,
2011, pp. 1237–1242.

[17] M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell,
K. Nigam, and S. Slattery, “Learning to extract symbolic knowledge
from the world wide web,” in Proceedings of the Fifteenth National
Conference on Artificial Intelligence (AAAI-98). AAAI Press, 1998,
pp. 509–516. [Online]. Available: http://www.cs.cmu.edu/˜webkb

[18] D. Decoste and B. Schölkopf, “Training invariant support vector ma-
chines,” Machine Learning, vol. 46, no. 1, pp. 161–190, 2002.

[19] T. Dietterich and G. Bakiri, “Solving multiclass learning problems via
error-correcting output codes,” arXiv preprint cs/9501101, 1995.

[20] J. A. Dobrosotskaya and A. L. Bertozzi, “A wavelet-Laplace variational
technique for image deconvolution and inpainting,” IEEE Transactions
on Image Processing, vol. 17, no. 5, pp. 657–663, 2008.

[21] ——, “Wavelet analogue of the Ginzburg-Landau energy and its Γ-
convergence,” Interfaces and Free Boundaries, vol. 12, no. 2, pp. 497–
525, 2010.

[22] S. Esedoḡlu and Y. Tsai, “Threshold dynamics for the piecewise constant
Mumford–Shah functional,” Journal of Computational Physics, vol. 211,
no. 1, pp. 367–384, 2006.

[23] L. C. Evans, “Convergence of an algorithm for mean curvature motion,”
Indiana University Mathematics Journal, vol. 42, no. 2, pp. 533–557,
1993.

13

[24] D. J. Eyre, “An unconditionally stable one-step scheme for gradient sys-
tems,” http://www.math.utah.edu/˜eyre/research/methods/papers.html,
1998.

[25] C. Garcia-Cardona, A. Flenner, and A. G. Percus, “Multiclass diffuse
interface models for semi-supervised learning on graphs,” in Proceedings
of the 2th International Conference on Pattern Recognition Applications
and Methods. SciTePress, 2013.

[26] H. Garcke, B. Nestler, B. Stinner, and F. Wendler, “Allen-Cahn systems
with volume constraints,” Mathematical Models and Methods in Applied
Sciences, vol. 18, no. 8, 2008.

[27] G. Gilboa and S. Osher, “Nonlocal operators with applications to image
processing,” Multiscale Modeling & Simulation, vol. 7, no. 3, pp. 1005–
1028, 2008.

[28] T. Goldstein and S. Osher, “The split Bregman method for L1-
regularized problems,” SIAM Journal on Imaging Sciences, vol. 2, no. 2,
pp. 323–343, 2009.

[29] T. Hastie and R. Tibshirani, “Classification by pairwise coupling,” The
Annals of Statistics, vol. 26, no. 2, pp. 451–471, 1998.

[30] M. Hein and S. Setzer, “Beyond spectral clustering - tight relaxations
of balanced graph cuts,” in Advances in Neural Information Processing
Systems 24, J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and
K. Weinberger, Eds., 2011, pp. 2366–2374.

[31] T. Joachims et al., “Transductive learning via spectral graph partition-
ing,” in International Conference on Machine Learning, vol. 20, no. 1,
2003, p. 290.

[32] B. Kégl and R. Busa-Fekete, “Boosting products of base classifiers,” in
Proceedings of the 26th Annual International Conference on Machine
Learning. ACM, 2009, pp. 497–504.

[33] R. Kohn and P. Sternberg, “Local minimizers and singular perturba-
tions,” Proc. Roy. Soc. Edinburgh Sect. A, vol. 111, no. 1-2, pp. 69–84,
1989.

[34] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[35] Y. LeCun and C. Cortes, “The MNIST database of handwritten digits.”
[Online]. Available: http://yann.lecun.com/exdb/mnist/

[36] J. Lellmann, J. H. Kappes, J. Yuan, F. Becker, and C. Schnörr, “Convex
multi-class image labeling by simplex-constrained total variation,” IWR,
University of Heidelberg, Technical Report, October 2008. [Online].
Available: http://www.ub.uni-heidelberg.de/archiv/8759/

[37] Y. Li and J. Kim, “Multiphase image segmentation using a phase-field
model,” Computers & Mathematics with Applications, vol. 62, no. 2,
pp. 737–745, 2011.

[38] E. Merkurjev, T. Kostic, and A. Bertozzi, “An MBO scheme on graphs
for segmentation and image processing,” Submitted, 2013.

[39] B. Merriman, J. K. Bence, and S. J. Osher, “Motion of
multiple functions: a level set approach,” J. Comput. Phys.,
vol. 112, no. 2, pp. 334–363, 1994. [Online]. Available:
http://dx.doi.org/10.1006/jcph.1994.1105

[40] B. Mohar, “The Laplacian spectrum of graphs,” Graph Theory, Combi-
natorics, and Applications, vol. 2, pp. 871–898, 1991.

[41] S. Nene, S. Nayar, and H. Murase, “Columbia Object Image Library
(COIL-100),” Technical Report CUCS-006-96, 1996. [Online]. Avail-
able: http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php

[42] K. Ni, B. Hong, S. Soatto, and T. Chan, “Unsupervised multiphase
segmentation: A recursive approach,” Computer Vision and Image Un-
derstanding, vol. 113, no. 4, pp. 502–510, 2009.

[43] P. Perona and L. Zelnik-Manor, “Self-tuning spectral clustering,” Ad-
vances in Neural Information Processing Systems, vol. 17, pp. 1601–
1608, 2004.

[44] J. Rubinstein, P. Sternberg, and J. Keller, “A simple proof of conver-
gence for an approximation scheme for computing motions by mean
curvature,” SIAM Journal of Applied Mathematics, vol. 49, no. 1, pp.
116–133, 1989.

[45] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp.
888–905, 2000.

[46] B. Simons, Phase Transitions and Collective Phenomena,
http://www.tcm.phy.cam.ac.uk/ bds10/phase.html, University of
Cambridge, 1997.

[47] A. Subramanya and J. Bilmes, “Semi-supervised learning with measure
propagation,” Journal of Machine Learning Research, vol. 12, pp. 3311–
3370, 2011.

[48] A. Szlam and X. Bresson, “A total variation-based graph clustering al-
gorithm for Cheeger ratio cuts,” in Proceedings of the 27th International
Conference on Machine Learning. Citeseer, 2010, pp. 1039–1046.

[49] A. D. Szlam, M. Maggioni, and R. R. Coifman, “Regularization on
graphs with function-adapted diffusion processes,” Journal of Machine
Learning Research, vol. 9, pp. 1711–1739, 2008.

[50] L. Vese and T. Chan, “A multiphase level set framework for image seg-
mentation using the Mumford and Shah model,” International Journal
of Computer Vision, vol. 50, no. 3, pp. 271–293, 2002.

[51] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
Computing, vol. 17, no. 4, pp. 395–416, 2007.

[52] J. Wang, T. Jebara, and S. Chang, “Graph transduction via alternating
minimization,” in Proceedings of the 25th international conference on
Machine learning. Citeseer, 2008, pp. 1144–1151.

[53] A. L. Yuille and A. Rangarajan, “The concave-convex procedure
(CCCP),” Neural Computation, vol. 15, no. 4, pp. 915–936, 2003.

[54] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, “Learning
with local and global consistency,” in Advances in Neural Information
Processing Systems 16, S. Thrun, L. K. Saul, and B. Schölkopf, Eds.
Cambridge, MA: MIT Press, 2004, pp. 321–328.

[55] D. Zhou and B. Schölkopf, “A regularization framework for learning
from graph data,” in Workshop on Statistical Relational Learning.
Banff, Canada: International Conference on Machine Learning, 2004.

[56] X. Zhu, “Semi-supervised learning literature survey,” University of
Wisconsin-Madison, Technical Report 1530, Computer Sciences, 2005.

Cristina Garcia-Cardona is a PhD student in the
Joint Degree Program in Computational Science
at Claremont Graduate University and San Diego
State University. She obtained her Bachelor’s degree
in Electrical Engineering from Universidad de Los
Andes in Colombia and her Master’s degree in
Emergent Computation from Universidad Central de
Venezuela. She is currently working under the super-
vision of Prof. Allon Percus and Dr. Arjuna Flenner.
Her research interests include energy minimization
and graph algorithms.

Ekaterina Merkurjev is a third year graduate
student at the UCLA Department of Mathematics.
She obtained her Bachelors and Masters degrees in
Applied Mathematics from UCLA in 2010. She is
currently working on a PhD under the supervision of
Prof. Andrea Bertozzi. Her research interests include
image processing and segmentation.

14

Andrea L. Bertozzi received the BA, MA, and PhD
degrees in mathematics from Princeton University,
Princeton, NJ, in 1987, 1988, and 1991 respectively.
She was on the faculty of the University of Chicago,
Chicago, IL, from 1991-1995 and Duke University,
Durham, NC, from 1995-2004. During 1995-1996,
she was the Maria Goeppert-Mayer Distinguished
Scholar at Argonne National Laboratory. Since 2003,
she has been with the University of California,
Los Angeles, as a Professor of Mathematics and
currently serves as the Director of Applied Math-

ematics. In 2012 she was appointed the Betsy Wood Knapp Chair for Inno-
vation and Creativity. Her research interests include image inpainting, image
segmentation, cooperative control of robotic vehicles, swarming, and fluid
interfaces, and crime modeling. Prof. Bertozzi is a Fellow of both the Society
for Industrial and Applied Mathematics and the American Mathematical
Society; she is a member of the American Physical Society. She has served
as a Plenary/Distinguished Lecturer for both SIAM and AMS and is an
Associate Editor for the SIAM journals Multiscale Modelling and Simulation,
Mathematical Analysis. She also serves on the editorial board of Interfaces
and Free Boundaries, Applied Mathematics Research Express, Nonlinearity,
Appl. Math. Lett., Math. Mod. Meth. Appl. Sci. (M3AS), J. Nonlinear Sci, J.
Stat. Phys., Comm. Math. Sci., Nonlinear Anal. Real World Appl., and Adv.
Diff. Eq. Her past honors include a SloanFoundation Research Fellowship,
the Presidential Career Award for Scientists and Engineers, and the SIAM
Kovalevsky Prize in 2010.

Arjuna Flenner received his Ph.D. in Physics at the
University of Missouri-Columbia in 2004. His major
emphasis was mathematical physics. Arjuna Flen-
ner’s research interests at the Naval Air Weapons
Centre at China Lake include image processing,
machine learning, statistical pattern recognition, and
computer vision. In particular, he has investigated
automated image understanding algorithms for ad-
vanced naval capabilities. His main research areas
are non-local operators, geometric diffusion, graph
theory, non-parametric Bayesian analysis, and a-

contrario hypothesis testing methods. Arjuna Flenner was a US Department
of Energy GAANN Fellowship in 1997-2001, and currently is also a visiting
research professor at Claremont Graduate University.

Allon G. Percus received his BA in physics from
Harvard in 1992 and his PhD from the Université
Paris-Sud, Orsay in 1997. He was a member of the
scientific staff at Los Alamos National Laboratory
in the Division of Computer and Computational
Sciences, and from 2003 to 2006 he served as Asso-
ciate Director of the Institute for Pure and Applied
Mathematics at UCLA. Since 2009, he has been
Associate Professor of Mathematics at Claremont
Graduate University. His research interests combine
discrete optimization, combinatorics and statistical

physics, exploiting physical models and techniques to study the performance
of algorithms on NP-hard problems.

